lunes, 11 de mayo de 2015



Engranes

Engranaje es una rueda o cilindro dentado empleado para transmitir un movimiento giratorio o alternativo desde una parte de una máquina a otra. Los engranajes están formados por dos ruedas dentadas, de las cuales la mayor se denomina corona y el menor 'piñon'. Un engranaje sirve para transmitir moviendo circularmente contacto de ruedas dentadas. Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el eje de una fuente de energía, como puede ser un motor de combustión interna o un motor eléctrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energia y es conocido como engranaje motor y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina engranaje conducido.1 Si el sistema está compuesto de mas de un par de ruedas dentadas, se denomina 'tren.


La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.

-Métodos de Fabricación de Engranes.
El proceso de fabricación está basado en la generación del diente del engranaje a partir del diámetro exterior del mismo. El formado de los dientes del engranaje se realiza por varios procedimientos. En los que principalmente se encuentran los siguientes:-Colado de arena: que es aquel en el que se funden los materiales y se coloca en un molde con la forma ya deseada de el objeto a obtener, El proceso tradicional es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza y que, mezclada con arcilla, adquiere cohesión y moldeabilidad sin perder la permeabilidad que posibilita evacuar los gases del molde al tiempo que se vierte el metal fundido


-Fundición por Revestimiento: se usa un modelo hecho de cera, el material del molde es de yeso. El proceso consiste en recubrir el modelo con yeso que luego al ser calentado solo queda el caparazón de yeso. Se utiliza para la elaboración de piezas pequeñas a gran presión, piezas dentales como los engranes principalmente pero también como levas, válvulas, trinquetes, entre algunos.


- Moldeo por Colado Continuo: Este método consiste en vaciar continuamente el metal fundido en el interior de u molde, el cual tiene las facilidades para enfriar rápidamente el metal hasta el punto de solidificación, y enseguida extraerlo del molde, este es un método utilizado por su rapidez pero desgraciadamente no maneja tanta precisión.


- Fundición Centrifuga: La fundición centrifuga es el proceso de hacer girar el molde mientras se solidifica el metal, utilizando así la fuerza centrifuga para acomodar el metal en el molde. Se obtienen mayores detalles sobre la superficie de la pieza y la estructura densa del metal adquiere propiedades físicas superiores. Las piezas de forma simétricas se prestan particularmente para este método, aun cuando se pueden producir otros muchos tipos de piezas fundidas.
Como los engranajes son unos mecanismos que se incorporan en la mayoría de máquinas que se construyen y especialmente en todas las que llevan incorporados motores térmicos o eléctricos, hace necesario que cada día se tengan que mecanizar millones de engranajes diferentes, y por lo tanto el nivel tecnológico que se ha alcanzado para mecanizar engranajes es muy elevado tanto en las máquinas que se utilizan como en las herramientas de corte que los conforman. Antes de proceder al mecanizado de los dientes los engranajes han pasado por otras máquinas herramientas tales como tornos o fresadoras donde se les ha mecanizado todas sus dimensiones exteriores y agujeros si los tienen, dejando los excedentes necesarios en caso de que tengan que recibir tratamiento térmico y posterior mecanizado de alguna de sus zonas. El mecanizado de los dientes de los engranajes a nivel industrial se realizan en máquinas talladoras construidas ex-profeso para este fin, llamadas fresas madres.Aplicación de los engranajesSon tan numerosos como variadas y las más de las veces no se limitan a un par de ruedas, sino a combinaciones más numerosas, en forma de tren de engranajes. El funcionamiento de un tren de engranajes es de la manera siguiente:- (1) arrastra una rueda mayor- (2) en cuyo mismo eje va calado otro piñón- (3) que, a su vez, ataca a otra rueda- (4) y así sucesivamente, el número de revoluciones disminuye según la fórmula inserta más arribaPero si ese mismo tren funciona al revés, siendo la rueda 4 motriz y transmitiéndose el movimiento de las ruedas a los piñones, la velocidad transmitida en 4 quedará multiplicada en 1 en las mismas proporciones. Las ruedas pares giran en sentido contrario al del eje del motor y las impares en el mismo sentido que éste. Es posible, no obstante, transmitir el movimiento sin cambio de su sentido adoptando una rueda conducida de engranaje interno, o sea, en forma de corona que lleva tallados los dientes en la superficie interior de la llanta.




-Dientes rectos

· Los engranajes cilíndricos rectos son el tipo de engranaje más simple y corriente que existe. Se utilizan generalmente para velocidades pequeñas y medias; a grandes velocidades Diente de un engranaje: son los que realizan el esfuerzo de empuje y transmiten la potencia desde los ejes motrices a los ejes conducidos. El perfil del diente, o sea la forma de sus flancos, está constituido por dos curvas evolventes de círculo, simétricas respecto aleje que pasa por el centro del mismo.

· Módulo: el módulo de un engranaje es una característica de magnitud que se define como la relación entre la medida del diámetro primitivo expresado en milímetros y el número de dientes.

· Circunferencia primitiva: es la circunferencia a lo largo de la cual engranan los dientes. Con relación a la circunferencia primitiva se determinan todas las características que definen los diferentes elementos de los dientes de los engranajes.

· Paso circular: es la longitud de la circunferencia primitiva correspondiente a un diente y un vano consecutivos.

· Espesor del diente: es el grosor del diente en la zona de contacto, o sea, del diámetro primitivo.

· Número de dientes: es el número de dientes que tiene el engranaje. Se simboliza como . Es fundamental para calcular la relación de transmisión. El número de dientes de un engranaje no debe estar por debajo de 18 dientes cuando el ángulo de presión es 20º ni por debajo de 12 dientes cuando el ángulo de presión es de 25º.

· Diámetro exterior: es el diámetro de la circunferencia que limita la parte exterior del engranaje.

· Diámetro interior: es el diámetro de la circunferencia que limita el pie del diente.

· Pie del diente: también se conoce con el nombre de dedendum. Es la parte del diente comprendida entre la circunferencia interior y la circunferencia primitiva.

· Cabeza del diente: también se conoce con el nombre de adendum. Es la parte del diente comprendida entre el diámetro exterior y el diámetro primitivo.

· Flanco: es la cara interior del diente, es su zona de rozamiento.

· Altura del diente: es la suma de la altura de la cabeza (adendum) más la altura del pie (dedendum).

· Ángulo de presión: el que forma la línea de acción con la tangente a la circunferencia de paso, φ (20º o 25º son los ángulos normalizados).

· Largo del diente: es la longitud que tiene el diente del engranaje

· Distancia entre centro de dos engranajes: es la distancia que hay entre los centros de las circunferencias de los engranajes.



-Tornillo sin fin y rueda dentada.

En ingeniería mecánica se denomina tornillo sin fin a una disposición que transmite el movimiento entre ejes que están en ángulo recto. Cada vez que el tornillo sin fin da una vuelta completa, el engranaje avanza un diente.
Con el tornillo sin fin y rueda dentada podemos transmitir fuerza y movimiento entre ejes perpendiculares.
La velocidad de giro del eje conducido depende del número de entradas del tornillo y del número de dientes de la rueda.
Si el tornillo es de una sola entrada, cada vez que éste de una vuelta avanzará un diente.
La expresión por la que se rige este mecanismo es similar a la indicada anteriormente para las ruedas dentadas teniendo en cuenta el número de entradas del tornillo como elemento, motor en este caso.

-Engranajes helicoidales dobles


Engranajes helicoidales dobles, engranajes "espina de pescado", superan el problema de carga axial presente en engranajes helicoidales simples al tener dos sets de dientes que una posición "V". Cada engranaje en un engranaje helicoidal doble puede ser considerado como un par de engranajes helicoidales simples. Este configuración cancela la carga axial ya que cada mitad del engranaje acepta la carga en direcciones opuestas. Pueden ser intercambiados directamente con engranajes rectos sin necesidad de usar rodamientos distintos. Engranajes helicoidales dobles son mas difíciles de fabricar debido a la complejidad de su forma.


-Engranajes cónicos

Los engranajes cónicos tienen forma de tronco de cono y permiten transmitir movimiento entre ejes que se cortan.9 Sus datos de cálculo se encuentran en prontuarios específicos de mecanizado.

-Engranajes cónicos de dientes rectos


Efectúan la transmisión de movimiento de ejes que se cortan en un mismo plano, generalmente en ángulo recto aunque no es el único ángulo pues puede variar dicho ángulo como por ejemplo 45, 60, 70, etc., por medio de superficies cónicas dentadas. Los dientes convergen en el punto de intersección de los ejes. Son utilizados para efectuar reducción de velocidad con ejes en 90°. Estos engranajes generan más ruido que los engranajes cónicos helicoidales. En la actualidad se usan muy poco.
Engranaje cónico helicoidal


Se utilizan para reducir la velocidad en un eje de 90°. La diferencia con el cónico recto es que posee una mayor superficie de contacto. Es de un funcionamiento relativamente silencioso. Además pueden transmitir el movimiento de ejes que se corten. Los datos constructivos de estos engranajes se encuentran en prontuarios técnicos de mecanizado. Se mecanizan en fresadoras especiales, en la actualidad Se utilizan en las transmisiones posteriores de camiones y automóviles.

-Engranaje cónico hipoide


Un engranaje hipoide es un grupo de engranajes cónicos helicoidales formados por un piñón reductor de pocos dientes y una rueda de muchos dientes, que se instala principalmente en los vehículos industriales que tienen la tracción en los ejes traseros. Tiene la ventaja de ser muy adecuado para las carrocerías de tipo bajo, ganando así mucha estabilidad el vehículo. Por otra parte la disposición helicoidal del dentado permite un mayor contacto de los dientes del piñón con los de la corona, obteniéndose mayor robustez en la transmisión. Su mecanizado es muy complicado y se utilizan para ello máquinas talladoras especiales (Gleason)

-Tornillo sin fin y corona.

Es un mecanismo diseñado para transmitir grandes esfuerzos, que también se utiliza como reductor de velocidad aumentando la potencia de transmisión. Generalmente trabaja en ejes que se cruzan a 90º.
Tiene la desventaja de que su sentido de giro no es reversible, sobre todo en grandes relaciones de transmisión, y de consumir en rozamiento una parte importante de la potencia. En las construcciones de mayor calidad la corona está fabricada de bronce y el tornillo sin fin, de acero templado con el fin de reducir el rozamiento. Si este mecanismo transmite grandes esfuerzos es necesario que esté muy bien lubricado para matizar los desgastes por fricción.
El número de entradas de un tornillo sin fin suele ser de una a ocho. Los datos de cálculo de estos engranajes están en prontuarios de mecanizado.
El tornillo sin fin puede mecanizarse mediante tornos, fresas bicónicas o fresas centrales. La corona, por su parte, requiere fresas normales o fresas madre.
Tornillo sin fin y corona glóbicos
Tornillo sin fin y corona glóbica.
Normalmente el contacto entre los dientes del tornillo sin fin y los de la corona ocurre en un solo punto, es decir, en una superficie muy reducida de metal. Por tanto, cuando la fuerza a transmitir es elevada se genera una fuerte presión en el punto de contacto. Para reducir la presión se puede aumentar la superficie de contacto entre el tornillo sin fin y la corona, aplicando una de las tres formas siguientes de acoplamiento:
corona glóbica y tornillo sin fin convencional
tornillo sin fin glóbico y corona convencional
tornillo sin fin glóbico y corona también glóbica
Para el mecanizado de tornillos sin fin glóbicos se utiliza el procedimiento de generación que tienen las máquinas Fellows.

-Engranajes planetarios

Los engranajes planetarios están compuestos por tres miembros: Piñón planetario, el Portasatélites y la Corona.
Engranajes interiores.
Los engranajes planetarios, interiores o anulares son variaciones del engranaje recto en los que los dientes están tallados en la parte interior de un anillo o de una rueda con reborde, en vez de en el exterior. Los engranajes interiores suelen ser impulsados por un piñón, (también llamado piñón Sol, que es un engranaje pequeño con pocos dientes). Este tipo de engrane mantiene el sentido de la velocidad angular.14 El tallado de estos engranajes se realiza mediante talladoras mortajadoras de generación.
La eficiencia de este sistema de reductores planetarios es igual a 0.98^(#etapas); es decir si tiene 5 etapas de reducción la eficiencia de este reductor seria 0,904 o 90,4% aproximadamente.
Debido a que tienen mas dientes en contacto que los otros tipos de reductores, son capaces de transferir / soportar mas torque; por lo que su uso en la industria cada vez es mas difundido. Ya que generalmente un reductor convencional de flechas paralelas en aplicaciones de alto torque debe de recurrir a arreglos de corona / cadenas lo cual no solo requiere de mas tamaño sino que también implicara el uso de lubricantes para el arreglo corona / cadena.
La selección de reductores planetarios se hace como la de cualquier reductor, en función del torque (Newton-metro).
Como cualquier engranaje, los engranajes del reductor planetario son afectos a la fricción y agotamiento de los dientes, (en ingles "pitting" y "bending").
Debido a que los fabricantes utilizan diferentes formas de presentación del tiempo de operación para sus engranajes y del torque máximo que soportan, la ISO tiene estándares para regular esto:
ISO 6636 para los engranajes,
ISO 281 para los rodamientos e
UNI 7670 para los ejes.
De esta forma se pueden comparar realmente las especificaciones técnicas de los engranajes / reductores y se puede proyectar un tiempo de operación antes de fallo de cualquiera de los mismos, (ya sean engranajes para reductores planetarios o flechas paralelas).

-Cremallera.

El mecanismo de cremallera aplicado a los engranajes lo constituyen una barra con dientes la cual es considerada como un engranaje de diámetro infinito y un engranaje de diente recto de menor diámetro, y sirve para transformar un movimiento de rotación del piñón en un movimiento lineal de la cremallera.15 Quizás la cremallera más conocida sea la que equipan los tornos para el desplazamiento del carro longitudinal.
n: velocidad angular. z: número de dientes de la rueda dentada. p: paso.

-Engranaje loco o intermedio

Es un engrane simple de un par de ruedas dentadas, el eje impulsor que se llama eje motor tiene un sentido de giro contrario al que tiene el eje conducido. Esto muchas veces en las máquinas no es conveniente que sea así, porque es necesario que los dos ejes giren en el mismo sentido. Para conseguir este objetivo se intercalan entre los dos engranajes un tercer engranaje que gira libre en un eje, y que lo único que hace es invertir el sentido de giro del eje conducido, porque la relación de transmisión no se altera en absoluto. Esta rueda intermedia hace las veces de motora y conducida y por lo tanto no altera la relación de transmisión.
Diámetro exterior: es el diámetro de la circunferencia que limita la parte exterior del engranaje.
Diámetro interior: es el diámetro de la circunferencia que limita el pie del diente.
Pie del diente: también se conoce con el nombre de dedendum. Es la parte del diente comprendida entre la circunferencia interior y la circunferencia primitiva.
Cabeza del diente: también se conoce con el nombre de adendum. Es la parte del diente comprendida entre el diámetro exterior y el diámetro primitivo.
Flanco: es la cara interior del diente, es su zona de rozamiento.
Altura del diente: es la suma de la altura de la cabeza (adendum) más la altura del pie (dedendum).
Ángulo de presión: el que forma la línea de acción con la tangente a la circunferencia de paso, φ (20º ó 25º son los ángulos normalizados).
Largo del diente: es la longitud que tiene el diente del engranaje
Distancia entre centro de dos engranajes: es la distancia que hay entre los centros de las circunferencias de los engranajes.
Relación de transmisión: es la relación de giro que existe entre el piñón conductor y la rueda conducida. La Rt puede ser reductora de velocidad o multiplicadora de velocidad. La relación de transmisión recomendada7 tanto en caso de reducción como de multiplicación depende de la velocidad que tenga la transmisión con los datos orientativos que se indican:
Velocidad lenta:

Velocidad normal :

Velocidad elevada:

Hay dos tipos de engranajes, los llamados de diente normal y los de diente corto cuya altura es más pequeña que el considerado como diente normal.

. Los engranajes se utilizan sobre todo para transmitir movimiento giratorio, pero usando engranajes apropiados y piezas dentadas planas pueden transformar movimiento alternativo en giratorio y viceversa.

Por la forma de transmitir el movimiento se pueden citar:

• Transmisión simple

• Transmisión con engranaje loco

• Transmisión compuesta. Tren de engranajes

Transmisión mediante cadena o polea dentada :

• Mecanismo piñón cadena

• Polea dentada




Eficiencia de los reductores de velocidad

En el caso de Winsmith oscila entre el 80% y el 90%, en los helicoidales de Brook Hansen y Stöber entre un 95% y un 98%, y en los planetarios alrededor del 98%

Características que definen un engranaje de dientes rectos

Los engranajes cilíndricos rectos son el tipo de engranaje más simple y corriente que existe. Se utilizan generalmente para velocidades pequeñas y medias; a grandes velocidades, si no son rectificados, o ha sido corregido su tallado, producen ruido cuyo nivel depende de la velocidad de giro que tengan.

Tipos de engranes

La principal clasificación de los engranajes se efectúa según la disposición de sus ejes de rotación y según los tipos de dentado. Según estos criterios existen los siguientes tipos de engranajes:

Ejes paralelos:


• Cilíndricos de dientes rectos

• Cilíndricos de dientes helicoidales

• Doble helicoidales

Ejes perpendiculares

• Helicoidales cruzados

• Cónicos de dientes rectos

• Cónicos de dientes helicoidales

• Cónicos hipoides

• De rueda y tornillo sinfín


Aqui podran encontrar un video donde se muestran los tipos de engranes: https://www.youtube.com/watch?v=K1O_My6OqLA
Diente de un engranaje: son los que realizan el esfuerzo de empuje y transmiten la potencia desde los ejes motrices a los ejes conducidos. El perfil del diente, o sea la forma de sus flancos, está constituido por dos curvas evolventes de círculo, simétricas respecto al eje que pasa por el centro del mismo.


• Módulo: el módulo de un engranaje es una característica de magnitud que se define como la relación entre la medida del diámetro primitivo expresado en milímetros y el número de dientes. En los países anglosajones se emplea otra característica llamada Diametral Pitch, que es inversamente proporcional al módulo. El valor del módulo se fija mediante cálculo de resistencia de materiales en virtud de la potencia a transmitir y en función de la relación de transmisión que se establezca. El tamaño de los dientes está normalizado. El módulo está indicado por números. Dos engranajes que engranen tienen que tener el mismo módulo.

• Circunferencia primitiva: es la circunferencia a lo largo de la cual engranan los dientes. Con relación a la circunferencia primitiva se determinan todas las características que definen los diferentes elementos de los dientes de los engranajes.

• Paso circular: es la longitud de la circunferencia primitiva correspondiente a un diente y un vano consecutivos.

• Espesor del diente: es el grosor del diente en la zona de contacto, o sea, del diámetro primitivo.




• Número de dientes: es el número de dientes que tiene el engranaje. Se simboliza como (Z). Es fundamental para calcular la relación de transmisión. El número de dientes de un engranaje no debe estar por debajo de 18 dientes cuando el ángulo de presión es 20º ni por debajo de 12 dientes cuando el ángulo de presión es de 25º.





conicos
helicoidales
helicoidales dobles








cónico hioideo

tornillo sin fin
engrane loko



Aplicacion de los engranes





Caja de velocidades.

Existe una gran variedad de formas y tamaños de engranajes, desde los más pequeños usados en relojería e instrumentos científicos (se alcanza el módulo 0,05) a los de grandes dimensiones, empleados, por ejemplo, en las reducciones de velocidad de las turbinas de vapor de los buques, en el accionamiento de los hornos y molinos de las fábricas de cemento, etc.

El campo de aplicación de los engranajes es prácticamente ilimitado. Los encontramos en las centrales de producción de energía eléctrica, hidroeléctrica y en los elementos de transporte terrestre: locomotoras, automotores, camiones, automóviles, transporte marítimo en buques de todas clases, aviones, en la industria siderúrgica: laminadores, transportadores, etc., minas y astilleros, fábricas de cemento, grúas, montacargas, máquinas-herramientas, maquinaria textil, de alimentación, de vestir y calzar, industria química y farmacéutica, etc., hasta los más simples movimientos de accionamiento manual.

Toda esta gran variedad de aplicaciones del engranaje puede decirse que tiene por única finalidad la transmisión de la rotación o giro de un eje a otro distinto, reduciendo o aumentando la velocidad del primero.


Incluso, algunos engranes coloridos y hechos de plástico son usados en algunos juguetes educativos.





Caja de velocidades





Eje primario de caja de cambios.

En los vehículos, la caja de cambios o caja de velocidades es el elemento encargado de acoplar el motor y el sistema de transmisión con diferentes relaciones de engranes o engranajes, de tal forma que la misma velocidad de giro del cigüeñal puede convertirse en distintas velocidades de giro en las ruedas. El resultado en la ruedas de tracción generalmente es la reducción de velocidad de giro e incremento del torque.

Los dientes de los engranajes de las cajas de cambio son helicoidales y sus bordes están redondeados para no producir ruido o rechazo cuando se cambia de velocidad. La fabricación de los dientes de los engranajes es muy cuidada para que sean de gran duración. Los ejes del cambio están soportados por rodamientos de bolas y todo el mecanismo está sumergido en aceite denso para mantenerse continuamente lubricado.





Reductores de velocidad






Mecanismo reductor básico.

Los reductores de velocidad son mecanismos que transmiten movimiento entre un eje que rota a alta velocidad, generalmente un motor, y otro que rota a menor velocidad, por ejemplo una herramienta. Se componen de juegos de engranajes de diámetros diferentes o bien de un tornillo sin fin y corona.

El reductor básico está formado por mecanismo de tornillo sin fin y corona. En este tipo de mecanismo el efecto del rozamiento en los flancos del diente hace que estos engranajes tengan los rendimientos más bajos de todas las transmisiones; dicho rendimiento se sitúa entre un 40 y un 90% aproximadamente, dependiendo de las características del reductor y del trabajo al que está sometido. Factores que elevan el rendimiento:

· Ángulos de avance elevados en el tornillo.

· Rozamiento bajo (buena lubricación) del equipo.

· Potencia transmitida elevada.

· Relación de transmisión baja (factor más determinante).

Existen otras disposiciones para los engranajes en los reductores de velocidad, estas se denominan conforme a la disposición del eje de salida (eje lento) en comparación con el eje de entrada (eje rápido). Así pues serían los llamados reductores de velocidad de engranajes coaxiales, paralelos, ortogonales y mixtos (paralelos + sin fin corona). En los trenes coaxiales, paralelos y ortogonales se considera un rendimiento aproximado del 97-98%, en los mixtos se estima entre un 70% y un 90% de rendimiento.

Además, existen los llamados reductores de velocidad de disposicíon epicicloidal, técnicamente son de ejes coaxiales y se distinguen por su formato compacto, alta capacidad de trasmisión de par y su extrema sensibilidad a la temperatura.

Las cajas reductoras suelen fabricarse en fundición gris dotándola de retenes para que no salga el aceite del interior de la caja.

Características de los reductores

· Potencia, en Kw o en Hp, de entrada y de salida.

· Velocidad, en RPM, de entrada y de salida.

· Velocidad a la salida.(RPM)

· Relación de transmisión

· Factor de seguridad o de servicio (Fs)

· Par transmitido (Mn1- Eje rápido) (Mn2-Eje lento)

Aquí podrán observar un vídeo en el cual se muestra un tipo de aplicación de los engranes en una caja de cambios:
https://www.youtube.com/watch?v=tqK0RHDM8PM